企業の誇り~わが社のここが素晴らしい~

(須坂創成高等学校創造工学科デュアルシステム協力企業会)

2025年4月25日現在

企業概況	会社名	株式会社 Aizaki	従業員数	45 人	(株)Aizaki				
	所在地	須坂市墨坂南 1-16-25	電話番号	026-245-5881					
	代 表 者 氏名	代表取締役社長 池田英平	担当者職 氏名	経営管理部 阿部政孝	₫₹₹				
	経営理念	『Let's all be happy』 みんな幸せになりましょう。	創立年月	1917年(大正6年)4月					
,,,	主要製品	各産業向けの金属加工部品、通信用・音響用プラグジャック							
	事業内容	精密機械加工(切削技術)による金属部品の製造 通信用・音響用プラグジャックの製造/販売							

1 会社のイメージを一言で表すキャッチコピー

「NO GLOBALIZATION NO FUTURE」 ~グローバル化なくして、明るい未来はない~ 2014 年にベトナム工場を設立。日本だけにとどまらずグローバルに Aizaki の技術を生かそうと チャレンジしている会社です。社員の平均年齢も 30 代と若いため、会社には明るく前向きな雰囲気があり、社員全員が日々自身の成長に取り組んでいます。

2 技術で優れているところ

マシニングセンター、複合旋盤、CNC旋盤・CNC自動旋盤、平面研削盤、ワイヤー加工機を中心に40台以上の設備を保有しているため、技術の幅も広く、様々な業界に取引先があります。また国家技能士も9名在籍し、毎年国家技能検定を受けるなど、技術力で世界に負けないように力を入れています。

マシニングセンター

CNC 旋盤

立型 5 軸マシニングセンター

3 製品で優れているところ

【金属加工部品】

5軸加工、3D加工、複合加工(最新設備と高度な技術力で難形状部品を多く生産しています)。 難削材対応(純チタン、ハステロイ、コバール 等様々な難削材製品にも対応できます)。

【プラグジャック】

当社の高精度なプラグ/ジャックは防災管理システム、火災報知器、 空港の管制塔、高速道路緊急電話 BOX 等、公共性の高い場所、 人命に関わる場所で広く使用されています。

4 組織力で優れているところ(納期が早い、コストが安い等)

オリジナル生産管理システム「AIZK PRO」を構築し、品質・納期・コストを一元管理しております。700 件/月近くになる受注件数に対しても無駄なく効率的に生産を支え、お客様の要求にお応えしています。

5 人材で優れているところ(技能の達人がいる等)

『国家技能士で溢れる工場へ!』を合言葉に、「国家技能検定の資格取得の奨励」を行なっており、必要なセミナー・講習の受講を会社で企画し費用負担をしています。毎年合格者を輩出しており、 今後も技能士の育成に取り組んでいきます。

6 その他で優れているところ(設備がすごい、自動化率がすごい等)

工場のスマートファクトリー化を目指し、すべての生産設備を社内 LAN で繋ぎ IoT 化を実現、機械の稼働データを収集・分析することにより生産改善に役立てています。また多関節の産業用ロボットを導入し、少量多品種生産に対応した『自動ワーク脱着システム』の構築を確立し、生産性の向上に取り組んでいます。

多関節ロボットによる生産システムの構築

PDS(パトランプデータシステム)

生徒実習可能な作業に〇を付けて下さい。(過去に実績有り、または今後可能なもの)									
挨拶訓練	0	金属熱処理		2D·3DCAD 設計	0				
清掃訓練		熱処理、加工、寸法測定		3D プリンタ(設計/製作)					
ミーティング参加		ルータ加工、塩ビ板・ガラス板		3D スキャナ(データ作成/検査)					
プレゼン等の発言・発表体験		メッキ処理		電気機器製造·組立					
機械加工一般	\circ	プラスチック部品の成型加工		配電盤組立·制御装置製作					
製造の一連の流れ(加工〜出荷)	\circ	プラスチックの成形・仕上げ検査		配線加工·組立					
金属部品の切削加工	\circ	プラスチック成形機の機械組立		プリント基板実装					
NC 旋盤	\circ	順送プレス金型の分解・組立		電子部品等の製造・組立					
MC 加工	\circ	金型設計と製作・組立		PLC シーケンサ制御プログラム					
精密板金加工		CAD・CAM による製造工程	\circ	ロボシリンダー制御プログラム					
プレス加工		ゴムの成分配合、特性検査		電子回路基礎					
ワイヤー放電加工	0	製品検査、測定、品質管理	\circ	マイコン制御・プログラミング					
溶接技術		生産設備等の保守・保全		ソーラシステム組立・プログラム					
レーザー溶接		乾燥食品製造・機械のメンテナンス							
鋳造技術、鋳型製作		加工ライン							