企業の誇り~わが社のここが素晴らしい~

(須坂創成高等学校創造工学科デュアルシステム協力企業会)

2024年4月22日現在

企業概況	会社名	NiKKi Fron 株式会社	従業員数	300人 (グループ全体)	NiKKi Fron(株)				
	所在地	長野市穂保 409-2 電話番号		026-296-9031					
	代表者 氏名	春日 孝之	担当者職 氏名	舟越 豊					
	経営理念	1 わが社は、お客さまのに「信頼される研究開発メー			創立年月				
		2 わが社は、質素倹約に多 資源を有効利用し環境調 3 わが社は、社員の人材育所	1944年2月 (創業 1896年)						
	主要製品	ある企業文化を創出し社会に貢献する。 フッ素樹脂製の工業用部品(半導体製造、化学プラント、ポンプ、バルマニュアル自動車用クラッチフェーシング等							
	事業内容	機能樹脂製品製造、FRP 製品製造、精密機械組立							

1 会社のイメージを一言で表すキャッチコピー

「つなぐ技術で未来をつなぐ」

2 技術で優れているところ

1896 年に麻問屋として創業。麻と絹を材料としたパッキン材の発明を機に商業から工業へ転換。 その絹麻パッキングの技術を基盤として、刻々と変化する時代に対応しながら「機能樹脂製品」(フッ 素樹脂製品の設計・製造)、「FRP(繊維強化樹脂)製品」(ガラス FRP でつくるクラッチフェーシン グ)、「精密機械」(プラスチック成形機の設計・組立)という技術領域を展開している。

3 製品で優れているところ

「フッ素樹脂製品」は、IoT・ロボット・AI を可能にする半導体づくりに欠かせない部材として機械加工・溶接加工・仕上げまで国内屈指の一貫生産体制を持ち、半導体にとどまらず自動車や化学産業まで多様なニーズを実現している。「FRP(繊維強化樹脂)製品」は自動車用クラッチフェーシングの分野で、日本で 50 年以上にわたり培った技術を基に新興国のアフターマーケットの需要をつかみASEAN 市場でトップシェアを獲得している。

4 組織力で優れているところ(納期が早い、コストが安い等)

最先端の素材、新しい分野へのチャレンジ、海外への展開と、常にお客様の期待に応えられる「選ばれる」メーカーでありたいと考えながら、本社がある長野を活動拠点に、国内では東京に営業所、滋賀に工場、そして海外ではタイに工場を構え、グローバル競争に打ち克てる組織体制で「開発型企業」を目指して日々取り組んでいる。

5 人材で優れているところ(技能の達人がいる等)

長年培ってきた基礎技術を基に、独自の開発成果を取り入れながら、各技術者が密接に連携を取って専門分野で市場をリードする製品開発を行っている。また、産・学・行と積極的に交流し、

常に技術革新に挑んでいる。

6 その他で優れているところ(設備がすごい、自動化率がすごい等)

創業からの歴史は 120 年を超え、伝統と革新の両立で新たな価値を生み出し続けている。

時代の最先端の高機能素材を扱い、半導体や自動車産業での幅広い市場を開拓するため

「現場力」を大事にしながら、より高効率な生産現場を目指して ICT 活用や自動化などを用い生産性向上に取り組んでいる。特にここ数年は、最新鋭の切削加工機、自動化ライン、産業ロボットの導入を急速に拡大し、工場の IoT 化を進めている。

生徒実習可能な作業に〇を付けて下さい。(過去に実績有り、または今後可能なもの)									
挨拶訓練	\circ	金属熱処理		2D·3DCAD 設計	0				
清掃訓練		熱処理、加工、寸法測定		3D プリンタ(設計/製作)					
ミーティング参加		ルータ加工、塩ビ板・ガラス板		3D スキャナ(データ作成/検査)					
プレゼン等の発言・発表体験		メッキ処理		電気機器製造·組立					
機械加工一般		プラスチック部品の成型加工	\circ	配電盤組立·制御装置製作	\circ				
製造の一連の流れ(加工~出荷)	\circ	プラスチックの成形・仕上げ検査	\bigcirc	配線加工·組立					
金属部品の切削加工		プラスチック成形機の機械組立	\circ	プリント基板実装					
NC 旋盤	\circ	順送プレス金型の分解・組立		電子部品等の製造・組立					
MC加工	\circ	金型設計と製作・組立		PLC シーケンサ制御プログラム	0				
精密板金加工		CAD・CAM による製造工程	\bigcirc	ロボシリンダー制御プログラム					
プレス加工		ゴムの成分配合、特性検査		電子回路基礎					
ワイヤー放電加工		製品検査、測定、品質管理	\bigcirc	マイコン制御・プログラミング	0				
溶接技術	\circ	生産設備等の保守・保全	\circ	ソーラシステム組立・プログラム					
レーザー溶接		乾燥食品製造・機械のメンテナンス							
鋳造技術、鋳型製作		加工ライン	0						

